What punctuates the geologic time scale?

Why are there sudden changes in rock types, sedimentation, and fossils between geologic Eons, Eras, Periods, Epochs, and Ages?

Peter L. Ward

United States Geological Survey Retired peward@Wyoming.com

> Geologists of Jackson Hole June 6, 2017

Geologic Society of America American Geophysical Union American Meteorological Society

"The final arbitrator of any point of view are experiments that seek the unbiased truth"

> Steven Chu Nobel prize in Physics 1997 Former Secretary of Energy

JustProveCO2.com

A simple negative demonstration

CO₂ simply does not absorb enough heat to warm Earth

There is a fundamental problem in the way computer models calculate heat flux Atmospheric concentration of CO_2 may simply be a proxy for ocean temperature Greenhouse-warming theory could be the greatest, most costly mistake in science CO_2 cannot explain most periods of warming throughout the geologic record Kaibab Limestone

Coconino Sandstone Hermit Shale

Supai Group

Redwall Limestone

Muav Limestone

Vishnu Schist

Toroweap Formation

Supai Group

Redwall Limestone

Muav Limestone

Bright Angel Shale

Tapeats Sandstone

Great Unconformity

Volcanic eruptions deplete the ozone layer

Chlorofluorocarbons (CFCs) also deplete the ozone layer

Less ozone causes ozone layer to cool and Earth to warm

Explosive, aerosol forming, volcanic eruptions

Typical above subduction zones Erupt for days, may recur within 500 to 1000 years Deplete ozone causing short-term warming Form aerosols in the lower stratosphere that last for 2-4 years, scattering and reflecting solar energy, causing net global cooling of 0.5°C

USGS

Pinatubo warmed 3.5°C world Dec 1991 to Feb 1992

Krakatau (1883) cooled ocean for more than 100 years

Multiple eruptions increment world into an ice age

Robock, 2002

Stack of 57 globally distributed benthic δ O records

Greenland ice core δ^{18} O records

Explosive volcanism led to onset Antarctic glaciation and the recent ice age

Basaltic volcanism warmed the world out of the last ice age

Basaltic volcanism in Iceland at the end of the last ice age

In only 6 months, it oozed basaltic lava over an area of 85 km², the size of Manhattan

A rate more than 30 times higher than observed in Hawaii

This was the highest rate of basalt extrusion since the eruption of Laki in 1783

Bárðarbunga, central Iceland, 2014

© Arctic-Images/Corbis

Laki 1783 (Iceland)

Eldgjá 935 (Iceland)

Temperatures in Europe raised 3.3°C, tens of thousands killed primarily by the effects of SO₂, sulfuric acid, and resulting famine

Led to the onset of the Medieval Warm Period

Extinctions Versus Flood Basalts

Paleocene Eocene Thermal Maximum Extrusion of basaltic magma reached a peak 56 million years ago during the opening of the Greenland-Norwegian Sea

Sea surface temperatures rose 6°C

More than 211 LIPs have been identified

Continental flood basalt provinces/Volcanic rifted margins

Silicic LIPs

Oceanic plateaux/Ocean basin flood basalt provinces

Late Proterozoic 650 Ma

Little sub-aerial rifting

Latest Cretaceous 69.4 Ma

Middle Eocene 50.2 Ma

© 1997 C. R. Scotese

Pleistocene 18,000 years ago

Rift-related, effusive, basaltic, volcanic eruptions warm Earth <u>suddenly</u>

Extrude basaltic lava for months to hundreds of thousands of years

The greater the duration, the greater the warming and extinctions Range in size from Hawaii to Large Igneous Provinces (LIPs)

Cause major warming of air and, over millennia, of oceans

Cause major ocean acidity (sulfuric acid from SO₂ and H₂S)

Cause major mass extinctions especially when lasting for long periods

Bárðarbunga largest since 1783-explains why 2016 hottest year

Rapid Warming

Incremental Cooling

Effusive rift-related Minimal aerosols Duration >months

Explosive subduction-related Extensive aerosols Frequency per century

Erratic sequences of rapid warming followed by slower cooling Dansgaard-Oeschger events observed in Greenland ice

Holocene temperatures and volcanism

5000 Year Sequences in the Green River Formation, Southwestern Wyoming Around 50 Ma

Temperate Climate

Very Hot Climate

Trona

Surdam, 2013

Lake Magadi, Kenya Trona

David S. Jones et al., 2017

backstripped sea level records of Kominz, 1995 adapted from Miller et al. 2005

Large Igneous Provinces punctuate the geologic time scale

Geological Society of America Time Scale

(LIPs from Ernst 2014)

Universide A Contract of Contr

We are not in an ice age now thanks to Iceland and the East African Rift

FOREWORD BY DAVID BENNETT LAING Assistant Professor of Geology, Retired, University of Maine Author. The Earth System: An Introduction to Earth Science

WHAT

Ozone Depletion

PETER LANGDON WARD, PHD

peward@Wyoming.com